[cs-talks] Upcoming CS Seminars: BUSec (Weds) + NRG (Mon)

Conroy, Nora Mairead conroynm at bu.edu
Mon Feb 2 20:48:03 EST 2015

BUSec Seminar
Private Access to Remote Data via the Melbourne Shuffle
Olya Ohrimenko, MSR
Wednesday, February 4, 2015 at 10am in MCS 180 - Hariri

Abstract: A shuffle is an algorithm for rearranging an array to achieve a random permutation of its elements. Early shuffle methods were motivated by the problem of shuffling a deck of cards. An oblivious shuffle is a distributed shuffle executed by a client who permutes an array of encrypted data items stored at a server in such a way that the server cannot determine the output permutation with probability better than a random guess. Several private cloud storage solutions that obfuscate the access pattern to the data use an oblivious shuffle as a fundamental building block. We present the Melbourne Shuffle, a simple and efficient oblivious shuffle that allows a client with O(\sqrt{n}) memory to obliviously shuffle an array of size n stored at a server by exchanging O(\sqrt{n}) messages of size O(\sqrt{n}). The Melbourne Shuffle is the first provably secure oblivious shuffle that is not based on sorting.  This talk is based on the paper “The Melbourne Shuffle: Improving Oblivious Storage in the Cloud”, appeared in International Colloquium on Automata, Languages and Programming (ICALP), 2014. Joint work with Michael Goodrich (UC Irvine), Roberto Tamassia (Brown University) and Eli Upfal (Brown University).

Wednesdays @ Hariri
Data + Narrative: Data Storytelling with Tableau Public
Tara Walker, Data Analyst and Mathematician, Tableau Public

Wednesday, February 4, 2015 at 3pm in MCS 180 - Hariri

If you love visual analysis and the intersection of numbers and storytelling, this demonstration by Seattle-based Tableau Public is for you. Join us at the Hariri Institute on Feb. 4 with Tableau trainer Tara Walker for a demonstration of powerful free software and the revolutionary visual query language the drives it.  More information on Tara Walker's talk here<http://www.bu.edu/hic/2015/01/16/tara-walker-datanarrative-data-storytelling-with-tableau-public/>.

NRG Seminar
Revisiting Network Resource Allocation in Data Centers
Fahad Dogar, Tufts
Monday, February 9, 2015 at 11am in MCS 148

Abstract: Popular applications like Facebook and Google Search perform rich and complex "tasks" (e.g., generating a user's social newsfeed). From a network perspective, these tasks typically comprise multiple flows, which traverse different parts of the network at potentially different times. Existing network resource allocation schemes (e.g., TCP), however, treat all these flows in isolation - rather than as part of a task - which delays completion of tasks (i.e., user requests). In this talk, I will make a case for "task-aware" network scheduling, and present Baraat, a decentralized task-aware scheduling system. Compared to existing approaches (e.g., TCP and other flow based schemes), Baraat improves both the average and tail response times for a wide range of workloads. I will also present a deployment friendly transport framework (PASE) which can support richer resource allocation schemes (e.g., task-aware scheduling) without requiring changes to network switches. Both Baraat and PASE appeared in ACM Sigcomm 2014. Joint work with researchers from MSR, MSU, and LUMS.

Bio: Fahad Dogar is an assistant professor in the computer science department at Tufts University. Earlier he did his PhD from Carnegie Mellon and undergrad from LUMS, Pakistan. Most recently, he was a post-doc in the systems and networking group at Microsoft Research UK. webpage: https://sites.google.com/site/fahaddogar/home

Do-Not-Track and the Economics of Third-Party Advertising
Georgios Zervas, BU
Junior Faculty Fellow, Hariri Institute for Computing
Assistant Professor of Marketing, School of Management
Wednesday, February 11, 2015 at 3pm in MCS 180 - Hariri

Abstract: Retailers regularly target users with online ads based on their web browsing activity, benefiting both the retailers, who can better reach potential customers, and content providers, who can increase ad revenue by displaying more effective ads. The effectiveness of such ads relies on third-party brokers that maintain detailed user information, prompting legislation such as do-not-track that would limit or ban the practice. We gauge the economic costs of such privacy policies by analyzing the anonymized web browsing histories of 14 million individuals. We find that only 3% of retail sessions are currently initiated by ads capable of incorporating third-party information, a number that holds across market segments, for online-only retailers, and under permissive click-attribution assumptions. Third-party capable advertising is shown by 12% of content providers, accounting for 32% of their page views; this reliance is concentrated in online publishing (e.g., news outlets) where the rate is 91%. We estimate that most of the top 10,000 content providers could generate comparable revenue by switching to a “freemium” model, in which loyal site visitors are charged $2 (or less) per month. We conclude that do-not-track legislation would impact, but not fundamentally fracture, the Internet economy.

Bio: Georgios Zervas is an Assistant Professor of Marketing at Boston University’s School of Management. Before joining BU in 2013 he was a Simons postdoctoral fellow at Yale and an affiliate at the Center for Research on Computation and Society at Harvard. He received his PhD in Computer Science in 2011 from Boston University. He is broadly interested in understanding the strategic interactions of firms and consumers participating in internet markets using large-scale data collection and econometric analysis.

IVC Seminar
Computational Understanding of Image Memorability
Zoya Bylinskii, MIT
Thursday, February 19, 2015 at 4pm in MCS 148

Abstract: In this talk, I will describe the research done in the Oliva Lab on Image Memorability - a quantifiable property of images that can be used to predict whether an image will be remembered or forgotten. Apart from presenting the lab's research directions and findings, I will focus on the work I have done in understanding and modeling the intrinsic and extrinsic factors that affect image memorability. I will present results on how consistent people are in which images they find memorable and forgettable (across experiments, settings, and visual stimuli) and I will show how these findings generalize to information visualizations. I will also demonstrate how the extrinsic factors of image context and observer eye behavior modulate image memorability. I will present an information-theoretic model of context and image distinctiveness, to quantify their effects on memorability. Finally, I will demonstrate how eye movements, pupil dilations, and blinks can be predictive of image memorability. In particular, our computational model can use an observer's eye movements on an image to predict whether or not the image will be later remembered. In this talk, I hope to offer a more complete picture of image memorability, including the contributions to cognitive science, and the computational applications made possible.

The following is the first paper on image memorability that has come out of the Oliva Lab, and has started a whole direction of research: http://cvcl.mit.edu/papers/IsolaXiaoTorralbaOliva-PredictingImageMemory-CVPR2011.pdf -- it can give people some background, though I will provide an intro as well.

Bio: Zoya Bylinskii is a PhD student at MIT, jointly supervised by Aude Oliva and Fredo Durand. She works in the area of computational perception - at the intersection of cognitive science and computer science. Specifically, she is interested in studying human memory and attention, in order to build computational models to advance the understanding and application possibilities of these areas. Her current work spans a number of research directions, including: image memorability, saliency benchmarking, and information visualizations. Zoya most recently completed her MS under the supervision of Antonio Torralba and Aude Oliva, on a "Computational Understanding of Image Memorability". Prior to this, her BS research on parts-based object recognition was supervised by Sven Dickinson at the University of Toronto. She also spent a lovely summer in 2011 working in BU with Stan Sclaroff on reduplication detection in sign language :)

-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://cs-mailman.bu.edu/pipermail/cs-talks/attachments/20150203/1e37970d/attachment.html>

More information about the cs-talks mailing list