<html>
  <head>

    <meta http-equiv="content-type" content="text/html; charset=utf-8">
  </head>
  <body bgcolor="#FFFFFF" text="#000000">
    <p><br>
    </p>
    <div class="moz-forward-container"><br>
      <br>
      <br>
      <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      <meta name="Title" content="">
      <meta name="Keywords" content="">
      <meta name="Generator" content="Microsoft Word 15 (filtered
        medium)">
      <style><!--
/* Font Definitions */
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
        {font-family:PMingLiU;
        panose-1:2 2 5 0 0 0 0 0 0 0;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        margin-bottom:.0001pt;
        font-size:12.0pt;
        font-family:Calibri;}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:#0563C1;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:#954F72;
        text-decoration:underline;}
span.EmailStyle17
        {mso-style-type:personal-compose;
        font-family:Calibri;
        color:windowtext;}
span.msoIns
        {mso-style-type:export-only;
        mso-style-name:"";
        text-decoration:underline;
        color:teal;}
.MsoChpDefault
        {mso-style-type:export-only;
        font-family:Calibri;}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
--></style>
      <div class="WordSection1">
        <p class="MsoNormal"><span style="font-size:11.0pt">Please join
            the Hariri Institute for Computing and BU Cyber Alliance
            <b>tomorrow, November 15, 2017</b>, for a Wednesday@Hariri
            talk, to be given by Ellen Goodman, a professor of law at
            Rutgers University.<o:p></o:p></span></p>
        <p class="MsoNormal"><span style="font-size:11.0pt"><o:p> </o:p></span></p>
        <p class="MsoNormal"><b><i><span style="font-size:11.0pt">Algorithmic
                Transparency for the Smart City<br>
              </span></i></b><b><span style="font-size:11.0pt">Ellen P.
              Goodman<br>
            </span></b><span style="font-size:11.0pt">Professor of
            Law, Rutgers University<o:p></o:p></span></p>
        <p class="MsoNormal"><span style="font-size:11.0pt"><o:p> </o:p></span></p>
        <p class="MsoNormal"><span style="font-size:11.0pt">3:00 PM –
            4:30 PM on Wednesday, November 15, 2017</span><span
            style="font-size:11.0pt;font-family:PMingLiU"><br>
          </span><span style="font-size:11.0pt">Refreshments &amp;
            networking at 2:45 PM<br>
            Hariri Institute for Computing<br>
            111 Cummington Mall, Room 180</span></p>
        <p class="MsoNormal"><br>
        </p>
        <br>
        <p class="MsoNormal">Abstract: Emerging across many disciplines
          are questions about algorithmic ethics – about the values<br>
          embedded in artificial intelligence and big data analytics
          that increasingly replace human decisionmaking.<br>
          In the public sector, the opacity of algorithmic
          decision-making is particularly problematic both<br>
          because governmental decisions may be especially weighty, and
          because democratically-elected<br>
          governments bear special duties of accountability. My
          co-author Bob Braunei and I set out to test the<br>
          limits of transparency around governmental deployment of big
          data analytics, focusing our<br>
          investigation on local and state government use of predictive
          algorithms. We conclude that the use of<br>
          these programs, including the underlying models and
          implementation, are not sufficiently transparent.<br>
          We propose a number of reforms to improve public access to,
          and understanding of, algorithmic<br>
          governance. Although it would require a multi-stakeholder
          process to develop best practices for record<br>
          generation and disclosure, we present what we believe are
          eight principal types of information that<br>
          such records should ideally contain.</p>
        <p class="MsoNormal"><br>
        </p>
        <p class="MsoNormal">Bio: Ellen P. Goodman specializes in
          information policy law: free speech,<br>
          media policy, privacy, data ethics, advertising, and digital
          platform power.<br>
          She is co-director and co-founder of the Rutgers Institute for
          Information<br>
          Policy &amp; Law and contributes to The Guardian and Slate.
          Her research on<br>
          algorithmic ethics in government has led to foundation
          consultations and<br>
          grants on increasing public access to data. Professor Goodman
          received<br>
          a Geraldine R. Dodge Foundation Grant to produce news
          gathering law<br>
          tools for digital journalists and Ford Foundation grants for
          work on public<br>
          media policy</p>
        <p class="MsoNormal"><br>
          <span style="font-size:11.0pt"><o:p></o:p></span></p>
        <p class="MsoNormal"><b><i><span style="font-size:11.0pt"><a
                  moz-do-not-send="true"
href="https://www.bu.edu/hic/2017/11/14/bu-cyber-alliance-hosts-1115-seminar-featuring-ellen-goodman-rutgers/">More
                  Information</a></span></i></b><span
            style="font-size:11.0pt"><o:p></o:p></span></p>
      </div>
    </div>
  </body>
</html>