<div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div>This week, Leo Rezyin will speak about key derivation from noisy sources. The following week, Manuel Egele, who is a new faculty member in BU&#39;s ECE department, will present. </div><div><br></div><div>As usual, lunch is after the seminar, and abstracts are below.</div><div><br></div><div><div>Hope you can make it!</div><div>Sharon</div><div><br></div><div><span><font style="background-color:rgb(255,255,204)">BUsec</font></span> <span><font style="background-color:rgb(255,255,204)">Calendar</font></span>:  <a href="http://www.bu.edu/cs/busec/" target="_blank">http://www.bu.edu/cs/<span><font color="#222222" style="background-color:rgb(255,255,204)">busec</font></span>/</a><div><span><font style="background-color:rgb(255,255,204)">BUsec</font></span> Mailing list: <a href="http://cs-mailman.bu.edu/mailman/listinfo/busec" target="_blank">http://cs-mailman.bu.edu/mailman/listinfo/<span><font color="#222222" style="background-color:rgb(255,255,204)">busec</font></span></a></div><div><br></div><div><div>The busec seminar gratefully acknowledges the support of BU&#39;s Center for Reliable Information Systems and Cyber Security (RISCS). <br></div></div><div><br></div><div>******</div></div></div></div></div></div></div><br><div>Title: Key Derivation From Noisy Sources With More Errors Than Entropy</div><div>Speaker: Leonid Reyzin, BU</div><div>Wednesday September 24, 10-11:30 am</div><div>Hariri Seminar Room, MCS180</div><div><br></div><div>Fuzzy extractors convert a noisy source of entropy (such as a visual password, a biometric reading, or a physically unclonable function) into a consistent uniformly distributed key. In the process of eliminating noise, they lose some of the entropy of the original source. Specifically, to tolerate t errors, most natural constructions lose at least as much entropy as the logarithm of the volume of the ball of radius t. This loss is too high for many practically important sources, which do not have sufficient starting entropy to tolerate it.<br></div><div><br></div><div>We construct the first fuzzy extractors that work for a large class of sources whose starting entropy is not high enough to tolerate such a loss. Our constructions correct Hamming errors over a large alphabet and (necessarily) impose certain restrictions on the distribution of the source. Their security is computational; unlike information-theoretic constructions, they are ``reusable&#39;&#39;--i.e., permit multiple independent enrollments of correlated readings.</div><div><br></div><div>We also explore the limits of achievable error-tolerance by fuzzy extractors, showing that customization for a particular distribution can be a powerful tool. </div><div><br></div><div><div>Joint work with Ran Canetti, Benjamin Fuller, Omer Paneth, and Adam Smith</div><span><font color="#888888"><font color="#222222"></font></font></span></div><span><font color="#888888"></font></span></div><span><font color="#888888"></font></span></div></div><div dir="ltr"><span><font color="#888888"><div class="gmail_quote" dir="ltr"><br></div><div class="gmail_quote" dir="ltr">****</div><div class="gmail_quote" dir="ltr"><br></div><div class="gmail_quote" dir="ltr"><div>Title: TBA</div><div>Speaker: Manuel Egele, BU</div><div>Wednesday October 1, 10-11:30 am</div><div>Hariri Seminar Room, MCS180<br></div></div></font></span><div class="gmail_quote"><span><font color="#888888"></font></span><span><font color="#888888">
</font></span></div></div></div></div>